Last updated on March 19, 2024 pm
安装包
- conda create -n seurat -c conda-forge r-seurat=4.1.1 -y
- conda activate seurat
- conda install -c conda-forge r-tidyverse -y
- conda install -c conda-forge r-irkernel -y
- Rscript -e “IRkernel::installspec(name=‘seurat’, displayname=‘r-seurat’)”
- conda install -c conda-forge r-biocmanager -y
- # conda install -c conda-forge r-sctransform -y
- # conda install -c conda-forge r-rocr -y
- conda install -c conda-forge r-modes -y
- # conda install -c conda-forge r-kernsmooth -y
- conda install -c conda-forge r-fields -y
- conda install -c conda-forge r-devtools -y
- conda install -c conda-forge r-clustree -y
- BiocManager::install(“glmGamPoi”)
- ~/dev/xray/xray -c ~/etc/xui2.json &
- wget -e “https_proxy=http://127.0.0.1:20809” https://github.com/chris-mcginnis-ucsf/DoubletFinder/archive/refs/heads/master.zip -O DoubletFinder-master.zip
- devtools::install_local(‘DoubletFinder-master.zip’)
读取数据
从UMI矩阵
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 
 | sce <- read.table(gzfile("GSM4203181_data.matrix.txt.gz"), header = T, row.names = 1)
 sce <- Seurat::CreateSeuratObject(sce, project = 'GSM4203181',
 min.cells = 3, min.features = 200)
 sce[["percent.mt"]] <- Seurat::PercentageFeatureSet(sce, pattern = "^MT-")
 sce[["percent.ERCC"]] <- Seurat::PercentageFeatureSet(sce, pattern = "^ERCC-")
 tmp <- rownames(sce@meta.data)
 sce[["orig.ident"]] <- paste0('sample', substr(tmp,18,nchar(tmp)))
 table(sce[["orig.ident"]])
 sce@meta.data
 saveRDS(sce, 'GSM4203181.rds')
 
 | 
cellranger输出
| 12
 3
 4
 5
 
 | sce <- Seurat::Read10X('filtered_feature_bc_matrix')sce <- Seurat::CreateSeuratObject(sce, project = 'SRX6887740',
 min.cells = 3, min.features = 200)
 sce[["percent.mt"]] <- Seurat::PercentageFeatureSet(sce, pattern = "^MT-")
 sce[["percent.ERCC"]] <- Seurat::PercentageFeatureSet(sce, pattern = "^ERCC-")
 
 | 
初步QC
| 12
 3
 4
 5
 6
 
 | options(repr.plot.width = 12, repr.plot.height = 6)Seurat::VlnPlot(sce, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
 plot1 <- Seurat::FeatureScatter(sce, feature1 = "nCount_RNA", feature2 = "percent.mt")
 plot2 <- Seurat::FeatureScatter(sce, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
 plot1 + plot2
 sce <- subset(sce, nFeature_RNA > 2500 & nFeature_RNA < 7500 & nCount_RNA > 2500 & nCount_RNA < 50000 & percent.mt < 7.5)
 
 | 
计算细胞周期评分
| 12
 3
 4
 5
 6
 7
 
 | sce <- Seurat::NormalizeData(sce)g2m_genes <- Seurat::CaseMatch(search=Seurat::cc.genes$g2m.genes,
 match=rownames(sce))
 s_genes <- Seurat::CaseMatch(search=Seurat::cc.genes$s.genes,
 match=rownames(sce))
 sce <- Seurat::CellCycleScoring(sce, g2m.features=g2m_genes, s.features=s_genes)
 sce$CC.Difference <- sce$S.Score - sce$G2M.Score
 
 | 
| 12
 3
 
 | sce <- Seurat::SCTransform(sce, vst.flavor = "v2",vars.to.regress = c("CC.Difference", "percent.mt"),
 verbose = F)
 
 | 
查看分群走向
降维
| 12
 3
 4
 5
 6
 
 | sce <- Seurat::RunPCA(sce, assay="SCT", verbose = FALSE)Seurat::ElbowPlot(sce, ndims = 50)
 sce <- Seurat::RunUMAP(sce, reduction = "pca",
 dims = 1:30, verbose = FALSE)
 sce <- Seurat::FindNeighbors(sce, reduction = "pca",
 dims = 1:30, verbose = FALSE)
 
 | 
分群
| 12
 3
 4
 5
 6
 7
 
 | sce <- Seurat::FindClusters(object = sce,
 resolution = c(seq(.1,1.6,.2))
 )
 options(repr.plot.width = 12, repr.plot.height = 12)
 require(clustree)
 clustree::clustree(sce@meta.data, prefix = "SCT_snn_res.")
 
 | 

使用DoubletFinder去除doublet
pK Identification
| 12
 3
 
 | sweep.res <- DoubletFinder::paramSweep_v3(sce, PCs = 1:10, sct = T, num.cores=8)sweep.stats <- DoubletFinder::summarizeSweep(sweep.res, GT = FALSE)
 bcmvn <- DoubletFinder::find.pK(sweep.stats)
 
 | 
Run DoubletFinder

| 12
 3
 4
 5
 6
 7
 8
 9
 
 | nExp_poi <- round(0.016*nrow(sce@meta.data))
 pK_bcmvn <- as.numeric(as.character(bcmvn$pK[which.max(bcmvn$BCmetric)]))
 sce <- DoubletFinder::doubletFinder_v3(sce, PCs = 1:10,
 pN = 0.25, pK = pK_bcmvn,
 nExp = nExp_poi, reuse.pANN = FALSE,
 sct = T)
 sce@meta.data
 DimPlot(sce, reduction = "umap", group.by = c("DF.classifications_0.25_0.2_20"))
 
 | 
| 12
 
 | sce <- subset(sce, DF.classifications_0.25_0.2_20 != 'Doublet')saveRDS(sce, 'SRX6887740.rds')
 
 | 
【迁移】使用SCTransform标准化
https://hexo.limour.top/shi-yong-SCTransform-biao-zhun-hua